

Abstract

Aim:

The project aims to develop an application which could query multiple

heterogeneous Databases in a distributed fashion.

The project would provide me familiarity with the RMI mechanism as implemented

in Java. It will also give me an insight into some of the challenges involved with

designing and building a distributed application.

Objective:

The problem involves developing a distributed database querying system. The

system has three databases. These databases are MS Access databases as used in

this Implementation. However, these databases could be of varying architectures

like Oracle or MS SQL server and so on.

The system has three Access databases on three different machines. The database

structures are as described in the problem statement earlier. Just above the

databases on each machine is a Query Database object. The Query Database

object can talk to the Database and make queries on it. Since the Query Database

objects are on the same Machine as the database they are interacting with, it is

assumed that the individual Query Database objects would know the structure of

the database they are querying. The Query Database object talks to the database

 Distributed Database Querying System

using JDBC (Java Database Connectivity) calls. Unfortunately, the Access databases

do not recognize JDBC calls. However, Access understands another standard i.e.

ODBC (Open Database Connectivity). Thus the Query Database objects use a JDBC-

ODBC bridge to connect to the database.

Each machine implements a server that implements a MyServer interface. These

servers have the job of binding the name of the particular machine with the RMI

registry. The servers implement among other things, a method called ProcessData.

The Process Data method is the remote method that would be called using RMI.

So the execution goes on like this,

1. A client takes a query from the user. This query is a sid of a student whose

information is required.

2. The client calls the ProcessData method of the second machine remotely

and passes it the query string and a result string (which is initially null). The

ProcessData calls the corresponding QueryDatabase method and store the

results got into the result string. It then calls the ProcessData of the third

machine remotely.

3. The ProcessData method on the third machine does a similar job and calls

the ProcessData method on the first machine (on which the client was run).

It then contacts the QueryDatabase object and gets the results from the first

database which are appended to the result string and finally, the

ProcessData method on the first machine will write out the result string to a

file which is named as query.

Existing System

We can’t access more than one databases existing in different servers.

Proposed System

By using this we can overcome the drawback of existing one.

Scope of the System

We can also implement internationalization (i18n) to support user interface in

various/local languages.

Module Description

The system “DDQS” consists of 4 modules

1. Personal Info Module.

2. Finance Info Module.

3. Account Info Module.

4. Schema Management Module

1) Personal Info:

This module stores the names of students, their phone numbers and a unique pid.

(Similar to VT)

2) Finance Info:

 This module stores the current Hokie account credit and insurance amounts for

each student (identified with the unique pid field)

3) Account Info:

 VT has decided to let students take copies and printouts up to a certain limit. This

database holds the current number of copies and printouts taken by each student

identified with the unique pid field

4) Schema management Module:

 This module manages the schema of the database spreaded across in all the DBs.

It helps if this system want to send the same amount of data to interoperable

systems then this schema document is submitted to other platforms to make them

understand that schema/structure in which data is organized.

Features to be implemented

• Normalized database

• Maintainability

• Exception handling

• Client-side validations

Technologies to be used

• Web Presentation: HTML, CSS

• Client – side Scripting: JavaScript

• Programming Language: Java

• Web based Technologies: JNDI, RMI,DAO

• Database Connectivity API: JDBC

• Debug Tool: Log 4J

• CASE tool: Rational Rose, Visual Paradigm, Enterprise Architect

• Backend Database: Oracle/SQL Server/MY SQL/MS Access

• Operating System: Windows XP/2000/2003, LINUX, Solaris

• IDEs: Eclipse with My Eclipse plug-ins/Net Beans/RAD

Hardware requirements

• Pentium processor -------- 233 MHZ or above

• RAM Capacity -------- 128MB

• Hard Disk -------- 20GB

• Floppy disk -------- 1.44 MB

• CD-ROM Drive -------- 32 HZ

• KEYBOARD -------- 108 Standard

